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Echinomycin (1) is an antitumor antibiotic isolated from 
Streptomyces echinatus.^2 It exhibits activity against Gram-
positive bacteria and has been shown to possess antimycoplasma 
and antiviral in addition to antitumor activity.3 Evidence suggests 

that the mechanism of action of echinomycin and related 
antibiotics resides in their ability to inhibit DNA directed RNA 
synthesis.4 The activity and unique mode of action of echinomycin 
has been sufficiently interesting to inspire clinical trials of the 
drug as an antitumor agent.3'5 The molecular basis of this activity 
appears to be due to the ability of quinoxaline antibiotics to act 
as DNA bis-intercalators. Structurally, the octadepsipeptide 
backbone of these systems serves as a rigid spacer to keep the 
quinoxaline rings approximately 10 A apart. This leaves sufficient 
space for these molecular tweezers to "pinch" two base pairs as 
they bind to the DNA double helix. X-ray data have been collected 
which provide solid evidence for this type of interaction.6 

Presumably, Nature has selected this binding motif in accord 
with the site exclusion principle, an empirical conclusion based 
on the observation that bis-intercalation generally does not occur 
on both sides of a single base pair.7 

The synthesis of echinomycin has been reported, as has the 
synthesis of analogues which are the result of changes made to 
the octadepsipeptide backbone or the intercalating quinoxaline 
rings.8 We are interested in synthesizing structures which bear 
a structural or topographical similarity to echinomycin but which 
are otherwise quite different. Our work on chiral molecular 
tweezers based on Kagan's ether led to the synthesis of 
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Scheme 1° 

" (a) (1) Br2, CHCl3, 25 °C; (2) NaH, THF/DMF (5:1), 0 0C, 
PhCH2Br. (b) (1) Ph3P=CHOMe, THF, 25 0C; (2) MeOH, (MeO)3CH, 
H2SO4, reflux, (c) (1) n-BuLi, THF, -78 0C; (2) dibenzofuran-
(DBF)acetaldehyde (7). (d) (1) catalyst TsOH, CH2Cl2; (2) SnCU, 
CH2Cl2, -78 0C. (e) (1) H2/Pd-C, MeOH-EtOAc (1:2); (2) Tf2O, 
collidine, CH2Cl2,0

 0C. (f) Pd(PPh3J4, (Me3Sn)2, LiCl, dioxane, reflux. 

2,9,10 while this compound has potential as a DNA intercalator, 

the space between the dibenzofuran rings is only about 7 A. Bis-
intercalation would require a violation of the site exclusion 
principle. We required a molecular tweezer which possessed Ci 
symmetry but was larger. These and other design considerations 
led to compound 3 as an initial target. 

The biaryl spacer in 3 may be problematic in that it adds a 
degree of freedom to the molecule not conducive to the bis-
intercalation event. Conversely, such a linkage should greatly 
facilitate the synthesis of compounds of this class. Furthermore, 
consideration of rotational minima about the biaryl linkage 
suggests that at any one time at least 25% of the molecules should 
possess a conformation in which both intercalating chromdphores 
are syn and disposed appropriately for bis-intercalation.11 

The synthesis of 3 is shown in Scheme 1. Bromination of 
w-hydroxybenzaldehyde followed by protection gave aldehyde 5 
in good yield.12 Wittig homologation and subsequent acetal 
formation led to the acetal 6. Halogen-metal exchange and 
reaction of the resulting organolithium with 7 gave 8 in fair yield. 
This hydroxyacetal was converted to the key building block 9 in 
68% overall yield via what has become standard chemistry in our 
group.9 Deprotection and triflate ester formation proceeded 
smoothly to afford 10.13 Interestingly, several attempts at coupling 
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Figure 1. Packing diagram for 3-TNB -NB inclusion complex; projection 
down the a axis. 

10 with itself using the standard Stille protocol were not very 
successful.14 In the best case run to date, the yield of 3 was 34%, 
and the yield of methylation product 1128%. These yields become 
51% and 39%, respectively, if recovered starting material is 
considered. Two different sources of hexamethylditin were used, 
and several different sets of reaction conditions were examined. 
It is probable that methyl transfer occurred from an aryltri-
methyltin compound.15 Finally, 3 can exist as a meso or a d,l 
isomer. Thus far we have only been able to isolate the d,l isomer. 
Resolution of this compound into two approximately equal 
intensity peaks on a chiral HPLC column (Chiracel OJ, 1.5 mL/ 
min, hexane/ethyl acetate linear gradient from 0-50% ethyl 
acetate over 25 min) established the compound as chiral. High-
resolution mass spectral analysis gave a mass of 622.2115, 
suggesting the molecular formula C44H30O4. Finally, 1H and 
13C NMR data strongly suggested the structure of 3 as indicated.16 

In light of the excellent mass balance obtained in the coupling 
reaction, excellent stereoselectivity is apparent. The mechanistic 
basis of this stereoselectivity, however, remains unclear.17 

The structure of 3 was indisputably confirmed by X-ray 
analysis. While 3 itself was amorphous, slow evaporation of a 
solution of chloroform/methylene chloride-containing 3, tri-
nitrobenzene (TNB), and nitrobenzene (NB) resulted in the 
formation of an inclusion complex which gave crystals suitable 
for X-ray diffraction analysis.18 A packing diagram is shown in 
Figure 1. Within the cleft of tweezer 3 is a dibenzofuran from 
a different tweezer as well as a TNB molecule. An ORTEP plot 
of this structure is shown in Figure 2. This nicely illustrates the 
ability of 3, like echinomycin, to simultaneously "pinch" two ir 
systems. Donor-acceptor stacking interactions are clearly evident, 
as are edge-face interactions between the biaryl spacer and the 
guests, both serving to stabilize the complex.9,19'20 Distances 
between the least-squares planes defined in Figure 2 are presented 
in Table 1. The stacked planes are essentially parallel and packed 
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Figure 2. ORTEP plot for the 3-TNB complex. Thermal ellipsoids are 
drawn at the 50% probability level. 

Table 1. Distances (A) and Angles (in Parentheses) between 
Least-Squares Planes in 3-TNB Complex as Defined in Figure 2 
plane 2 3 4 5 6 

1 3.4(4.6) 6.8(4.9) (94.2) (94.4) 10.4(4.9) 
2 3.3(5.4) 5.3" (91.2) (93.6) 6.9(5.4) 
3 (89.7) 4.8» (89.6) 3.5(0) 
4 (31.4) (89.7) 
5 (89.6) 

" Centroid of TNB to plane 4. * Centroid of distal ring of dibenzofuran 
to plane 5. 

within the expected van der Waals distance. They are within a 
few degrees of being perpendicular to the planes defined by the 
biphenyl spacer unit. The hydrogen of the TNB (plane 2) is 
calculated to be 2.9 A from the centroid of the closest phenyl ring 
of the spacer unit (i.e., plane 4). Two of the hydrogens of the 
dibenzofuran (plane 3) come into proximity to plane 5 and are 
3.0 and 2.6 A from the centroid of that phenyl ring. All of these 
distances fall with the range for favorable edge-face interac­
tions.19'21 Finally, and as expected, the biphenyl unit has a dihedral 
angle of 31.4°, comparable to the minima found in biphenyl itself.'' 
These data further confirm the importance of aromatic interac­
tions in the stabilization and, consequently, design of host-guest 
and supramolecular systems.9'21 

In summary, we have prepared the molecular tweezer 3 by a 
stereoselective biaryl coupling procedure. The space between 
the chromophores in 3 (10.4 A) is sufficient to accommodate two 
TT systems. Mechanistic studies of the biaryl coupling reaction, 
the synthesis of water-soluble congeners of 3, and the study of 
this and other classes of molecular tweezers for the preparation 
of new materials will be reported in due course. 
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